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These notes are rough and incomplete. They are intended to clarify some points

about using degenerate perturbation theory in the study of atomic structure.

Generalities

Recall that in quantum mechanics we cannot simultaneously specify exact values
for all physical observables. Rather, we choose our basis for the physical Hilbert
space to consist of vectors which are simultaneous eigenvectors of a maximal set
of commuting Hermitian operators.

Almost always, we are interested in studying the energy eigenstates of a
system. So, given the Hamiltonian Ĥ, we need to find a set of operators which
commute with Ĥ and each other. The eigenvalues of these operators are then
our ‘good quantum numbers’, used to label states.

Degenerate perturbation theory

Suppose our Hamiltonian is a sum of two operators:

Ĥ = Ĥ(0) + εĤ(1)

where ε � 1. Suppose further than we have already ‘solved’ the system corre-
sponding to Ĥ(0). In other words, we have a complete set of eigenvalues/vectors
of Ĥ0:

Ĥ(0)|α, i〉 = E(0)
α |α, i〉 (1)

Here the label i represents extra quantum numbers to distinguish degenerate
states. In the B1 course we want only the simplest result from perturbation
theory: the eigenvalues of Ĥ to first order in ε. The energy eigenstates will also
change; focussing on a single state which has energy E(0)

α in the limit ε→ 0, we
expand it in terms of the eigenstates of Ĥ(0):

|α, I〉 = |α, I〉(0) + ε|α, I〉(1) +O(ε2)

=
∑
i

c
(0)
I,i |α, i〉+ ε

∑
i, β 6=α

c
(1)
I,β,i|β, i〉+O(ε2)

I represents another set of quantum numbers, labelling the same states as i. The
perturbation will generally break the degeneracy, and therefore the corrections
to the eigenvalues will depend on I:

Eα,I = E(0)
α + εE

(1)
α,I +O(ε2)
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We can expand the eigenvalue equation Ĥ|α, I〉 = Eα,I |α, I〉 keeping only terms
to first order in ε:∑

i

c
(0)
I,i Ĥ

(0)|α, i〉+ ε
∑
i

c
(0)
I,i Ĥ

(1)|α, i〉+ ε
∑
i, β 6=α

c
(1)
I,β,iĤ

(0)|β, i〉

=
∑
i

c
(0)
I,iE

(0)
α |α, i〉+ ε

∑
i

c
(0)
I,iE

(1)
α,I |α, i〉+ ε

∑
i, β 6=α

c
(1)
I,β,iE

(0)
α |β, i〉

Using (1), we can replace Ĥ(0) with its eigenvalue wherever it appears. The
first term on each side is then the same, so these cancel, and we get∑

i

c
(0)
I,iE

(1)
α,I |α, i〉 =

∑
i

c
(0)
I,i Ĥ

(1)|α, i〉+
∑
i, β 6=α

c
(1)
I,β,i(E

(0)
β − E

(0)
α )|β, i〉 (2)

Now recall that different energy eigenstates are necessarily orthogonal, so in
particular

〈α, J |α, I〉 = δJ,I

This will hold at every order in ε, so if we act on (2) with (0)〈α, J |, the LHS
gives zero, as does the second term on the RHS, since the sum excludes β = α.
We therefore obtain

(0)〈α, J |Ĥ(1)|α, I〉(0) = E
(1)
α,I δJ,I

In other words, Ĥ(1) is diagonal in the basis |α, I〉(0), and the first order correc-
tions to the energies are

E
(1)
α,I = (0)〈α, I|Ĥ(1)|α, I〉(0) (3)

So, in summary:

• In each eigenspace of Ĥ(0), choose quantum numbers I corresponding to
operators which commute with Ĥ(1).

• The first order energy corrections are then given by (3).

• Note that, although we can also use (2) to calculate the first order correc-
tions to the eigenstates, we don’t need them to find the first order shifts
in the eigenvalues.
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Atomic physics

As with most real-life systems, there are many different interactions acting si-
multaneously in an atom. However they are not all equally important; if we can
understand the strongest interactions first, then perturbation theory will let us
deal with the rest approximately.

The crudest approximation we can make for an atom is that the electrons
move in a central field, sourced by the nucleus and the electrons themselves.
The Hamiltonian in this approximation is

Ĥ(0) =
e

4πε0

∑
i

(
− Z

|r̂i|
+ Q̃(|r̂i|)

)

where Q̃ represents the central part of the electron-electron repulsion. Since this
is a spherically symmetric potential which falls to zero at infinity, the analysis
is very similar to that for hydrogen: each electron is labelled by the quantum
numbers n, l,ml,ms. The main difference is that the energy now depends on
both n and l, due to screening effects, represented by the Q̃ term.

Residual Coulomb interaction

In the B1 course at Oxford, we consider only relatively small atoms, for which
the next strongest interaction is the residual (non-central) Coulomb repulsion
between electrons. The corresponding term in the Hamiltonian is

ε1Ĥ
(1) =

e

4πε0

∑
i

∑
j>i

e

|r̂i − r̂j |
− Q̃(|r̂i|)


The angular momentum operator l̂i associated with a particular electron does
not commute with this operator (exercise), so the separate values l and ml for
each electron are not good quantum numbers. However, we can define the total
orbital angular momentum operator:

L̂ =
∑
i

l̂i

L̂ commutes with both Ĥ(0) and Ĥ(1) (essentially because the total system is
rotationally invariant), so L and ML are good quantum numbers i.e. we can
use them to label the energy eigenstates. You should convince yourself that
this gives the same number of states as specifying l and ml for each electron
separately; we have simply chosen a better basis for the same Hilbert space.
Similarly, we can replace the separate values of ms with S and MS for the
whole system. At this stage either choice is fine, because we have not taken
spin interactions into account.
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Spin-orbit interaction

The next interaction to consider is the spin-orbit interaction, the Hamiltonian
for which is

ε2Ĥ2 ∝ L̂ · Ŝ

The individual components of L̂ and Ŝ do not commute with Ĥ2, but |L̂|2 and
|Ŝ|2 do. Therefore L and S are still good quantum numbers, but ML and MS

are not. But if we define the total angular momentum Ĵ = L̂ + Ŝ, then it is
easy to check that Ĵ commutes with Ĥ2, since

L̂ · Ŝ =
1
2

(|Ĵ|2 − |L̂|2 − |Ŝ|2)

The values of S,L, J,MJ then uniquely specify a state, so we have our complete
set of quantum numbers. (Once again, you can check that we are describing the
same number of states at each step.)

Of course this is not the end of the story for atomic structure, but hopefully
it is enough to illustrate the concepts.
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